机器学习
回归模型评估
案例一:鸢尾花分类
机器学习的优化算法
交叉熵
lightGBM
处理非平衡数据集的方法
AdaBoost
GBDT
XGBoost
决策树
线性回归
pytorch 优化器的使用
分类模型评估
损失函数
前馈神经网络
特征工程
分箱
评分卡实现过程
逻辑回归
本文档使用 MrDoc 发布
-
+
首页
逻辑回归
### 多分类 当逻辑回归应用于二分类任务时有两种主要思路: ### 优化算法 最大似然下的逻辑回归没有解析解,我们常用梯度下降之类的算法迭代优化得到局部较优的参数解。 如果是Keras等神经网络库建模,梯度下降算法类有SGD、Momentum、Adam等优化算法可选。对于大多数任务而言,通常可以直接先试下Adam,然后可以继续在具体任务上验证不同优化算法效果。 如果用的是scikitl-learn库建模,优化算法主要有liblinear(坐标下降)、newton-cg(拟牛顿法), lbfgs(拟牛顿法)和sag(随机平均梯度下降)。liblinear支持L1和L2,只支持OvR做多分类;“lbfgs”, “sag” “newton-cg”只支持L2,支持OvR和MvM做多分类;当数据量特别大,优先sag! ### 参考 > [逻辑回归优化技巧总结](https://www.jianshu.com/p/7adb90d32609) > [如何理解随机梯度下降](https://www.zhihu.com/question/264189719)
gaojian
2022年11月18日 17:38
分享文档
收藏文档
上一篇
下一篇
微信扫一扫
复制链接
手机扫一扫进行分享
复制链接
关于 MrDoc
觅思文档MrDoc
是
州的先生
开发并开源的在线文档系统,其适合作为个人和小型团队的云笔记、文档和知识库管理工具。
如果觅思文档给你或你的团队带来了帮助,欢迎对作者进行一些打赏捐助,这将有力支持作者持续投入精力更新和维护觅思文档,感谢你的捐助!
>>>捐助鸣谢列表
微信
支付宝
QQ
PayPal
Markdown文件
分享
链接
类型
密码
更新密码